Inexact Newton methods for model simulation
نویسندگان
چکیده
Robust and efficient solution techniques for solving macroeconometric models are increasingly becoming a key factor in developing models employed by policy-making institutions for policy simulations and forecasting. Traditionally, when solved in presence of forward-looking variables, these models are nonlinear, large-scale and sparse and give rise to large and highly structured nonlinear systems. This paper proposes a Newton-GMRES method obtained tuning up the basic algorithm by properly choosing the forcing terms sequence and the preconditioning strategy. In addition, the Newton-GMRES method is wrapped into a globalization strategy based on a non monotone linesearch technique in order to enlarge its convergence basin and to enhance its robustness. The combination of these ingredients yields a reliable method with low memory requirements. Numerical experiments using the MULTIMOD model and a basic Real Business Cycle model are presented. A Matlab code based on this ap-
منابع مشابه
Global convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملGlobally Convergent Inexact Newton Methods
Inexact Newton methods for finding a zero of F 1 1 are variations of Newton's method in which each step only approximately satisfies the linear Newton equation but still reduces the norm of the local linear model of F. Here, inexact Newton methods are formulated that incorporate features designed to improve convergence from arbitrary starting points. For each method, a basic global convergence ...
متن کاملLP-SVR Model Selection Using an Inexact Globalized Quasi-Newton Strategy
In this paper we study the problem of model selection for a linear programming-based support vector machine for regression. We propose generalized method that is based on a quasi-Newton method that uses a globalization strategy and an inexact computation of first order information. We explore the case of two-class, multi-class, and regression problems. Simulation results among standard datasets...
متن کاملInexact Newton Methods Applied to Under – Determined Systems by Joseph P . Simonis A Dissertation
Consider an under-determined system of nonlinear equations F (x) = 0, F : IR → IR, where F is continuously differentiable and m > n. This system appears in a variety of applications, including parameter–dependent systems, dynamical systems with periodic solutions, and nonlinear eigenvalue problems. Robust, efficient numerical methods are often required for the solution of this system. Newton’s ...
متن کاملA nonmonotone inexact Newton method
In this paper we describe a variant of the Inexact Newton method for solving nonlinear systems of equations. We define a nonmonotone Inexact Newton step and a nonmonotone backtracking strategy. For this nonmonotone Inexact Newton scheme we present the convergence theorems. Finally, we show how we can apply these strategies to Inexact Newton Interior–Point method and we present some numerical ex...
متن کاملOn Semilocal Convergence of Inexact Newton Methods
Inexact Newton methods are constructed by combining Newton’s method with another iterative method that is used to solve the Newton equations inexactly. In this paper, we establish two semilocal convergence theorems for the inexact Newton methods. When these two theorems are specified to Newton’s method, we obtain a different Newton-Kantorovich theorem about Newton’s method. When the iterative m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Comput. Math.
دوره 88 شماره
صفحات -
تاریخ انتشار 2011